
OOCA: Testing of Object Oriented Developed Software
Prof. Mostafa Sami Mahmoud

Computer Science Professor
Dean Faculty of Information

Technology , Misr University for
Science & Technology

mostafa_sami2002@yahoo.com

Dr.Aliaa A.A. Youssif
Faculty of Computers and

Information, Helwan University,
Cairo, Egypt

aliaay@yahoo.com

Ahmed M.Abd El- Zaher
Faculty of Computer Sciences,
Misr International University,

Cairo, Egypt
aazaher@email.com

Abstract

This paper addresses the development and

implementation of a new automated data collection and
measuring tool to test thoroughly any visual basic.net
object oriented software design. For this purpose, the
study introduces a set of six context coverage metrics in
conjunction with traditional structural coverage metrics
(a total of nine) in an integrated measuring scheme for
testing phase over the object oriented software. The
developed system ensure that all object oriented software
elements are fully tested including cyclomatic
complexity, weighted methods per class, response for a
class, lack of cohesion methods, coupling between
objects, depth of inheritance tree, number of children,
lines of code, and comment percentage.

To establish the confidence in the proposed measuring
scheme, this study is applied to two different object
oriented software environment namely: an HTML editor
and a VHDL design visual basic.net software. Test results
are given as a full report illustrating qualitatively the
nine criteria of the object oriented software design

1. Introduction

The use of structural coverage metrics to measure the
thoroughness of a test set is a well-understood technique.
However, the application of the technique to object
oriented software is still presenting new challenges.
Many publications were reported before relevant to
measure the quality of object oriented software [1-5].
The concepts of software metrics are also well
established, and many metrics relating to product quality
have been developed and used [6-10].
Traditional structural coverage metrics [1-3] such as
statement coverage, branch coverage and condition
coverage measure how well the bodies of each method
have been tested. Unfortunately these traditional metrics
do not take into account all features of the object-oriented
design [3]. For instance, the use of polymorphism
encapsulation of state-dependent behaviour behind well-
defined class interfaces is effectively ignored. Since
encapsulations of behaviour are major features of any
object-oriented design, metrics which ignore them are
insufficient for determining whether the software under
test has been thoroughly tested. Therefore, traditional
structural coverage metrics are inadequate measures of

test thoroughness for object-oriented software systems.
New object-oriented coverage metrics are required to
ensure thorough testing.
In this study, a set of six specific context coverage
metrics [2-3] are used, in conjunction with the traditional
structural coverage metrics to develop an automated
measuring scheme to ensure that all object oriented
software elements are fully tested including cyclomatic
complexity, weighted methods per class, response for a
class, lack of cohesion methods, coupling between
objects, depth of inheritance tree, number of children,
lines of code, and comment percentage. The proposed
testing system is established based on the latest visual
basic.net product as an effective tool for object oriented
design. It should be noted that object-oriented metrics
evaluation criteria must be able to focus on the
combination of functions and data as an integrated object
in any object oriented software design. In addition, the
evaluation of the utility of a metric as a quantitative
measure of software quality must relate to the software
assurance technology centre (SATC) Software Quality
Model [2]. The selected object-oriented metrics criteria in
this paper, therefore, are the evaluation of the following
areas:

• Efficiency of the implementation of the design
• Understandability/Usability
• Testability/Maintenance
• Complexity
• Reusability/Application specific

However, whether a metrics is “traditional” or “specific”,
it must be effective in measuring and evaluating the
above areas.

2. Object Oriented Testing

Unique features of object-oriented programming and
design impose added complexities on the measuring
process including message passing, inheritance, and
polymorphism. These features require a suite of measures
designed to handle them.

The classical strategy for testing computer software
begins with "testing in the small" and works outward
toward "testing in the large." Stated in the jargon of
software testing, we begin with unit testing, then progress
toward integration testing, and culminate with validation
and system testing [5-10]. In conventional applications،

unit testing focuses on the smallest compliable program
unit—the subprogram (e.g., module, subroutine,
procedure, component). Once each of these units has been
tested individually, it is integrated into a program
structure while a series of regression tests are run to
uncover errors due to interfacing between the modules
and side effects caused by the addition of new units.
Finally, the system as a whole is tested to ensure that
errors in requirements are uncovered [9, 10].

Traditional metrics used before in conventional object
oriented programs are well understood and established in
many reports before. Therefore, the attention given here
will be focused on the six specific metrics suggested to
build up an integrated measuring scheme for object
oriented system. This study, however, supports also the
use of well known three traditional metrics usually
adopted to measure the methods implemented in object
oriented software design.

3. Object-oriented specific metrics

Many different metrics have been proposed for object-
oriented systems. The object-oriented metrics chosen in
this study measure main structures that, if improperly
designed, affect negatively the design and code quality
attributes. The selected object-oriented metrics are
primarily applied to the concepts of classes, coupling, and
inheritance.

It should be noted that as with traditional metrics,
researchers and practitioners have not reached a common
definition or counting methodology. In some cases, the
counting method for a metric is determined by the
software analysis package being used to collect the
metrics.

3.1. Metric 1: Weighted Methods per Class
(WMC)

The WMC is a count of the methods implemented
within a class or the sum of the complexities of the
methods (method complexity is measured by cyclomatic
complexity). The number of methods and the complexity
of the methods involved is a predictor of how much time
and effort is required to develop and maintain the class
[2,3]. The larger the number of methods in a class, the
greater the potential impact on children since children
will inherit all the methods defined in a class. Classes
with large numbers of methods are likely to be more
application specific, limiting the possibility of reuse. This
metric measures usability and reusability.

3.2. Metric 2: Response for a Class (RFC)

The RFC is the cardinality of the set of all methods
that can be invoked in response to a message to an object
of the class or by some method in the class. This includes
all methods accessible within the class hierarchy. This
metric looks at the combination of the complexity of a
class through the number of methods and the amount of
communication with other classes. The larger the number
of methods that can be invoked from a class through
messages, the greater the complexity of the class. If a
large number of methods can be invoked in response to a
message, the testing and debugging of the class becomes
complicated since it requires a greater level of
understanding on the part of the tester. A worst case value
for possible responses will assist in the appropriate
allocation of testing time [2 , 3]. This metric evaluations
system design as well as the usability and the testability.

3.3. Metric 3: Lack of Cohesion of Methods
(LCOM)

LCOM measures the degree of similarity of methods
by instance variable or attributes. Any measure of
separateness of methods helps identify flaws in the design
of classes. There is a standard way to compute the
cohesion:

Calculate for each data field in a class what percentage
of the methods use that data field. Average the
percentages then subtract from 100%. Lower percentages
mean greater cohesion of data and methods in the class
[2, 3].

Methods are more similar if they operate on the same
attributes. Count the number of disjoint sets produced
from the intersection of the sets of attributes used by the
methods.

High cohesion indicates good class subdivision. Lack
of cohesion or low cohesion increases complexity,
thereby increasing the likelihood of errors during the
development process. This metric evaluates the design
implementation as well as reusability.

3.4. Metric 4: Coupling Between Object Classes
(CBO)

CBO is a count of the number of other classes to
which a class is coupled. It is measured by counting the
number of distinct non-inheritance related class
hierarchies on which a class depends. Excessive coupling
is detrimental to modular design and prevents reuse. The
more independent a class is, the easier reused in another
application. The larger the number of couples, the higher
the sensitivity to changes in other parts of the design and
therefore maintenance is more difficult. Strong coupling
complicates a system since a module is harder to
understand, change or correct by itself if it is interrelated

with other modules. Complexity can be reduced by
designing systems with the weakest possible coupling
between modules [2,3]. This improves modularity and
promotes encapsulation. CBO evaluates design
implementation and reusability.

3.5. Metric 5: Depth of Inheritance Tree (DIT)

The depth of a class within the inheritance hierarchy is
the maximum length from the class node to the root of the
tree and is measured by the number of ancestor classes.
The deeper a class is within the hierarchy, the greater the
number methods it is likely to inherit making it more
complex to predict its behavior. Deeper trees constitute
greater design complexity, since more methods and
classes are involved, but the greater the potential for reuse
of inherited methods. A support metric for DIT is the
number of methods inherited (NMI). This metric
primarily evaluates reuse but also relates to
understandability and testability [2, 3].

3.6. Metric 6: Number of Children (NOC)

The number of children is the number of immediate
subclasses subordinate to a class in the hierarchy. It is an
indicator of the potential influence a class can have on the
design and on the system. The greater the number of
children, the greater the likelihood of improper
abstraction of the parent and may be a case of misuse of
sub classing. But the greater the number of children, the
greater the reuse since inheritance is a form of reuse. If a
class has a large number of children, it may require more
testing of the methods of that class, thus increase the
testing time. NOC, therefore, primarily evaluates
testability and design [2, 3].

4. Development Object Oriented Code
Analysis (OOCA)

The above specific six measuring metrics in addition
to the traditional metrics are implemented together in
automated object oriented code analysis software
established in this research. This developed measuring
and code analysis program is designed specially to serve
the V.Basic.NET developers in general and V. Basic.NET
developers in organizations that develop N systems
applications in particular.

It should be noted that Visual Studio .NET is a
complete set of development tools for building ASP Web
applications, XML Web services, desktop applications,
and mobile applications. Visual Basic .NET, Visual
C++ .NET, and Visual C# .NET all use the same
integrated development environment (IDE), which allows

them to share tools and facilitates in the creation of
mixed-language solutions.

This study, however, selected the Visual Basic.Net as
the main tool of building the automated OOCA scheme
for measuring the quality of object oriented software
design. The reasons are obviously clear as the Visual
Basic.Net is the latest version of the visual basic product
family and testing the N systems applications of visual
basic.net are sensible selection for this research.

Recently, N systems became a new trend in some
organizations that develop more than one copy of product
with different programming approaches to solve the same
problem with the same software tool depending on the
foundation of more than one coding team. These N
systems used to minimize the risk of failing for any
working software.

The OOCA automated measuring scheme suggested in
this paper, should serve the V.Basic.NET developers by
giving them an over view of all classes, attributes and
methods they used in developing any V.B application.
The output test results will guide the coder to have the
ability to change in the code in a more efficient faster
way. From this point of view and the change that the
developer will do inside the code, the testing process will
become easier for the tester.

In the N systems developing, the proposed OOCA and
evaluating scheme will have another benefit as to analyze
the Visual Basic source code for the N software copies.
Based on the results of this analysis, a comparison can be
made between the multiple copies to select the more
efficient module code from the multiple software copies
to have the more efficient product source finally available
to the client.

5. Applications

To establish the reliability of the proposed testing
scheme, the OOCA was applied to two different object
oriented applications designed based on Visual Basic.Net
software. These two applications are: a VHDL design and
HTML editor. Test results are given as a full report
illustrating qualitatively the five criteria of the object
oriented software design.

5.1. Product No. 1: VHDL Application

 The very high descriptive language (VHDL) is a
software design package for developing flexible control
on machines and manufacturing systems. The OOCA was
implemented on a VDHL application designed especially
for computer aided manufacturing system for the
production of printed circuits.

5.2. Product No.2: HTML Editor

HTML Editor 1.0 is a complete application that allows

you to create html file. It has many functions, like create
new file, open, save, clear, print, undo, redo, cut, copy,
paste, delete, select all, insert date, time, image, find, add
tables[first Column, New Column, Cells, More Column] ,
add fonts [Font Name, Size, Color, Styles] , Spell check,
and many more. This application is provided with pop up
menu with the facilities of previewing the source code of
the editor itself.

The OOCA was successfully applied to these

applications and the measuring results were generated.
Figures (1-5) shows the OOCA interface and samples

of the output test results of the VHDL product, while as
Figures.(6-8) show the output results of the HTML editor
based on the proposed scheme of this study.

6. Discussion of Results

The following tables and samples summarize the
discussion and the emphasized remarks on the results:

6.1. VHDL Application:

Figure 1: OOCA interface

Figure 2: OOCA select files of VHDL Application

Figure 3: OOCA Parsing Output

Figure 4: OOCA Parsing Tree Output

Figure 5: OOCA Tree View

WMC

There are some classes with suitable
number of methods, but there are other classes
with more than 45 methods. This can be
enhanced by dividing those classes into 3 or 4
subclasses.

DIT

The depth of inheritance values are good in
all classes specially the maximum value which
is 3. These values are very good compared to
the product functionality.

CBO

The results of coupling between objects:
The above report indicates no coupling in 3
main classes between any object inside them.
On the other hand, in the other 5 classes the
coupling factor is so large this means if there is
any change in any object we will notice
relevant changes in the other objects.

LCOM
The cohesion values are almost perfect

because there is almost no relation between
methods inside classes.

NOC

Number of children in this product is good
because there are two levels in the tree of the
product. This tree contains eight classes and
therefore the NOC will not be a problem.

6.2. HTML Editor:

Figure 6: OOCA select files of HTML Editor

Figure 7: OOCA Output of HTML Editor

Figure 8: OOCA Tree View of HTML Editor

WMC

There is good methods division between
classes and there is no need for enhancing the
methods per classes specially that the classes
contain 3 or 4 methods at maximum.

DIT

The depth of inheritance values is good in
all classes specially that the maximum value is
2 which are very satisfactory compared to the
product functionality.

CBO
The analysis report indicates that there is

coupling between objects in classes and this is
almost the weakness point in this product.

LCOM
There is almost no cohesion between

methods in classes because in each class there
are 3 methods.

NOC

Number of children in this product is good
because there is one level in the tree of the
product. So the NOC will not be a problem
through the evaluating process of the product.

7. Conclusion

It is confirmed that Object-oriented design and
development became more popular in today's object
oriented applications and environment. Therefore these
developments require a different approach not only to
design and implementation, but also to thoroughly
measuring tests and evaluations.

Since object oriented technology uses objects and not
algorithms as its fundamental building blocks, the
approach to software testing metrics for object-oriented
programs must be different from the standard testing
metrics set.

Some testing metrics, such as lines of code, have
become accepted as "standard" for traditional functional/
procedural programs, but for object-oriented systems this
is insufficient.

This study established more proper testing scheme for
object oriented software design based on nine measuring
metrics rather than the three traditional metrics used
before.

The applications of the automated OOCA presented in
this paper in conjunction with the obtained test results
indicate the successful efficiency and reliability of the
proposed scheme and this application will be a helper tool
for the programmers to be used through the coding phase.
As the coders used this application, they will have an over
view for the object oriented techniques they used. So they
can simplify the usage of these techniques which give the
testers the opportunity to make simple test cases.

8. References

[1] Cherniavsky, J.C. and Smith, C.H., "On Weyuker's
Axioms for Software Complexity Measures", IEEE
Transactions on Software Engineering, vol. 17, pp. 636-
638, 1991.

[2] Rosenberg, Linda, “Software Quality Metrics for
Object Oriented System Environments”, National
Aeronautics and Space Administration, NASA, 1995.

[3] Rosenberg,jhon and Kolling, Micheal,”Testing object
orinted programs:Macking it simple”,Proceding of the
twenty-eighth SIGCSE technical symposium on computer
science education,pp. 34-37 ,1997.

[4] Chen , Yan H. , Tse ,T. H. and Chan , F. T., “In black
and white: an integrated approach to class-level testing of
object-oriented program.”, ACM Transactions on
Software Engineering and Methodology, pages 250–295,
1998.

[5] Bach, James, “ Heuristic Risk-Based Testing”,
Software Testing and Quality Engineering Magazine,
1999.

[6] Binder, Robert V., Testing Object Oriented Systems,
Modules, patterns and tools, Addison-Wesley Publishing
Company, 2000.

[7] Labiche Y., Fosse, Thévenod P. and Waeselynck H.,
"Testing levels for object-oriented software", Proceedings
of the 22nd international conference on Software
engineering, 2000.

[8] Somerville, Ian, Software Engineering, Addison-
Wesley Publishing Company, 6’Th edition, 2000.

[9] Chen , Yan H. , Tse ,T. H. and Chan , F. T., “
TACCLE: a methodology for object-oriented software
testing at the class and cluster levels”, ACM Transactions
on Software Engineering and Methodology (TOSEM),
Volume 10 Issue 1, 2001.

[10] Martin, Robent C., Agile Software Development,
Principles, Patterns and Practices, Prentice Hall
Publishing Company, 2003.

